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A generalized finite integral transform combining the Fourier and
Hankel transforms is introduced. This transform, together with a
Laplace transformation with respect to time, makes possible the
simultaneous solution of the problems for a plate, a cylinder, and a
sphere.

Finite integral transforms are convenient for solv-
ing problems of theoretical physics, when the value
of the investigated quantity at the initial instant is
given in the form of a function of the coordinates.

The method has been developed in [1—11] and else-
where. Integral transforms were used in [12] to solve
problems of nonsteady heat and mass transfer.

This article introduces a generalized transform
that combines the Fourier and Hankel transforms. For
this purpose, we employ the functions [13]
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which can be expressed in terms of the hypergeometric
function
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The functions ®1(x) and V{(x)have the great ad-
vantage that they make it possible to solve the prob-
lems for a plate (I' = 0), a cylinder (I' =1), and a
sphere (I' = 2) simultaneously. For I" =0,1, and 2, we
obtain the usual series defining trigonometric and
Bessel functions:

Dy (x) = cosx, Dy(x) =1 (x), Dy(x)= sxr;x ;

Vo(x) =sinx, V,(x)=1(x),

Vz(x):SIHJC—x;CCOSX' (4)
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It is easy to show that, if u;, g, ..., p, are posi-
tive roots (numbered in increasing order) of one of
the equations

Pr(w) =0, (5)
Pr(p) .
2O i

the functions ®(pyx), @r(Kzx), ..., ®T{(uyx) form on
the interval [0, 1] an orthogonal system with weight xT.
Then, for any function f(x) that satisfies the Dirchlet
conditions on the interval [0, 1], it is possible to con-
struct a series
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The generalized ihtegral transform is defined as
1
(FW)y= [+ Pr (o) f () dx. (9)
0

Here, 4 is a root of one of the three equations (5)~(7).
For ' =0 and 1, Eq. (9) gives the Fourier [1] and
Hankel [2] transforms as special cases.

Comparing Eq. (8) with definition (9), we see that
the integral is exactly {f(u)} . Hence, it follows that
the inversion formula for transform (9) has the form
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We now apply transform (9) to problems of heat con-
duction. The temperature field of one~dimensional
bodies is described by the equation
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= +
dFo ag
I 38, Fo
3 0t

The initial temperature is agsumed to be a given

function of the dimensionless coordinate
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Moreover, for a plate, by virtue of symmetry,

3980, Fo) _ ¢
P (13)

Assuming that the operator of transform (9) is com-
mutative with the differentiation operator 8/8 Fo, after
multiplying all the terms of Eq. (11) by £1'&(ué) and
integrating with respect to £ from 0 to 1, we obtain

3 (8 (., Fo)), 88 (1, Fo)
+uVr@ 6(l, Foy—p* {0 (s, Fo)} .+
+ A{0 (u, Fo)}.+{Po(u, Fo)},. (14)

Applying a Laplace transformation to Eq. (14), we
obtain
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Going over to the inverse transform with respect
to the parameter s, we find
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Substituting (16) into the inversion formula (10), we
obtain
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In boundary conditions of the first kind, the surface
temperature of the body is given as a function of time:

0 (1, Fo) = ¢ (Fo). (18)

In this case, we must assume that u, are roots of Eq.
(5). Substituting (5) and (18) into (17), we find
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In boundary conditions of the second kind, the heat
flux at the surface is given as a function of time:

29(1, Fo)

o Ki (Fo). (20)

In this case, it is necessary to assume that p, are
roots of Eq. (6). Substituting (6) and (20) into (17), and
keeping in mind that u = 0 is also a root of Eq. (6),
we find
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In boundary conditions of the third kind, heat ex-
change with the surrounding medium proceeds accord-
ing to Newton's law

a0(1, Fo) |
3
where the temperature of the surrounding medium,
ef(Fo), is a given function of time.

In this case, we must assume that My are roots of
Eq. (7). Using (7) and (22), from (17) we find

+ Bi[0(1, Fo)—8; (Fo)] =0, (22)
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If, into the solutions obtained, we substitute the
values of the functions ¢ p(x) and V(x) in accordance
with (4), we obtain the solutions for a plate, a cylin-
der, and a sphere. From (19), (21), and (23), there
follows the series of particular solutions given in
[12,14,15] and elsewhere.

The uniformity of the equations obtained facilitates
programming and computer calculations. For this pur-
pose, it is desirable to compile standard routines for
computing ¢ p(x) and Vp(x).

The proposed inteéral transform can easily be used
to solve a number of problems of thereotical physics,
and also the system of equations of heat and mass
transfer given in [12].

NOTATION

X is the independent variable; T is a constant equal
to 0, 1, and 2, respectively, for a plate, a cylinder,
and a sphere; ®(x) is a function defined by Eq. (1);
Vi(x) is a function defined by Eq. (2); ¢ is a dimen-
sionless coordinate; Fo is the Fourier number; 6(£,
Fo) is the dimensionless temperature; Po(é, Fo) is the
Pomerantsev nhumber; A is a dimensionless parame-
ter; ¢(Fo)is the dimensionless surface temperature;
Ki(Fo) is the Kirpichev number; Bi is the Biot num-
ber; Gf(Fo) is the dimensionless temperature of the
surrounding medium; u, are the roots of one of the
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three equations (5)—(7); s is the Laplace transform
parameter.
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